Sunday, June 15, 2014

Sponges breathe out neon green water like they are smoking - Science Movie Today

Jonathan Bird's Blue World: Sponges!





There's something completely fascinating in something so incredibly simple. Sponges—animals that can't walk or swim—are incredibly efficient at what they do and have a super fun history to them too. Watch Jonathan Bird explain how sponges work and where they come from in this Blue World clip.



To illustrate how sponges work in filtering water, the neon dye was added at the base of the sponge. The sponge sucks in that water almost immediately with a sweet smoking effect.



    Sponges are animals of the phylum Porifera (/pɒˈrɪfərə/; meaning "pore bearer"). They are multicellular organisms that have bodies full of pores and channels allowing water to circulate through them, consisting of jelly-like mesohyl sandwiched between two thin layers of cells. Sponges have unspecialized cells that can transform into other types and that often migrate between the main cell layers and the mesohyl in the process. Sponges do not have nervous, digestive or circulatory systems. Instead, most rely on maintaining a constant water flow through their bodies to obtain food and oxygen and to remove wastes. (From Wikipedia)

Display of natural sponges for sale on Kalymnos in Greece

Friday, June 13, 2014

How small can technology get? - A Week in Science



    Technology keeps getting smaller, but is there a limit? We take a look at the limits of Moore's Law, which predicts that computers will continue to shrink and transistors become smaller. Plus, what does quantum computing mean for technology in the future?


Wednesday, June 11, 2014

Can You Walk on Water? Non-Newtonian Fluid Pool



A non-Newtonian fluid is a fluid whose flow properties differ in any way from those of Newtonian fluids. Most commonly the viscosity (the measure of a fluid's ability to resist gradual deformation by shear or tensile stresses) of non-Newtonian fluids is dependent on shear rate or shear rate history. Some non-Newtonian fluids with shear-independent viscosity, however, still exhibit normal stress-differences or other non-Newtonian behavior. Many salt solutions and molten polymers are non-Newtonian fluids, as are many commonly found substances such as ketchup, custard, toothpaste, starch suspensions, paint, blood, and shampoo. In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different and can even be time-dependent (Time Dependent Viscosity). Therefore, a constant coefficient of viscosity cannot be defined.



Although the concept of viscosity is commonly used in fluid mechanics to characterize the shear properties of a fluid, it can be inadequate to describe non-Newtonian fluids. They are best studied through several other rheological properties that relate stress and strain rate tensors under many different flow conditions--such as oscillatory shear or extensional flow--which are measured using different devices or rheometers. The properties are better studied using tensor-valued constitutive equations, which are common in the field of continuum mechanics.

Superhydrophobic Surface and Magnetic Liquid - The Slow Mo Guys



Superhydrophobic surfaces are highly hydrophobic, i.e., extremely difficult to wet. The contact angles of a water droplet exceeds 150° and the roll-off angle/contact angle hysteresis is less than 10°. This is also referred to as the Lotus effect, after the superhydrophobic leaves of the lotus plant.

Railroad thermite welding - Thermite Reaction -Science Movie Today


      Thermite is a pyrotechnic composition of metal powder fuel and metal oxide. When ignited by heat, thermite undergoes an exothermic oxidation-reduction reaction. Most varieties are not explosive but can create brief bursts of high temperature in a small area. Its form of action is similar to that of other fuel-oxidizer mixtures, such as black powder.


      Thermites have diverse compositions. Fuels include aluminium, magnesium, titanium, zinc, silicon, and boron. Aluminium is common because of its high boiling point. Oxidizers include boron(III) oxide, silicon(IV) oxide, chromium(III) oxide, manganese(IV) oxide, iron(III) oxide, iron(II,III) oxide, copper(II) oxide, and lead(II,IV) oxide.


Sunday, June 8, 2014

A Lathe is Cutting a Hardware - Science Movie Today


A lathe is a machine tool which rotates the workpiece on its axis to perform various operations such as cutting, sanding, knurling, drilling, or deformation, facing, turning, with tools that are applied to the workpiece to create an object which has symmetry about an axis of rotation.
        Lathes are used in woodturning, metalworking, metal spinning, thermal spraying, parts reclamation, and glass-working. Lathes can be used to shape pottery, the best-known design being the potter's wheel. Most suitably equipped metalworking lathes can also be used to produce most solids of revolution, plane surfaces and screw threads or helices. Ornamental lathes can produce three-dimensional solids of incredible complexity. The workpiece is usually held in place by either one or two centers, at least one of which can typically be moved horizontally to accommodate varying workpiece lengths. Other work-holding methods include clamping the work about the axis of rotation using a chuck or collet, or to a faceplate, using clamps or dogs.

        Examples of objects that can be produced on a lathe include candlestick holders, gun barrels, cue sticks, table legs, bowls, baseball bats, musical instruments (especially woodwind instruments), crankshafts, and camshafts.
 (Wikipedia)

Underwater Bullets at 27,000fps-Supercavitation-Science Movie Today



      The bullet flies underwater in the speed which is several times faster than water's. As a result, the bullet push water away, the water would not refill the space immediately. So the bubble is created. People call the phenomenon "Supercavitation".

       is the use of cavitation effects to create a bubble of gas inside a liquid large enough to encompass an object travelling through the liquid, greatly reducing the skin friction drag on the object and enabling achievement of very high speeds. Current applications are mainly limited to projectiles or very fast torpedoes, and some propellers, but in principle the technique could be extended to include entire vehicles. This phenomenon can also be produced by the very fast strike of the appendages of the crustacean mantis shrimp Odontodactylus scyllarus, that uses it to attack and kill its prey. (Wikipedia)

Sponsor

Sponsor